
1

SOLO: Self Organizing Live Objects

Qi Huang1, 2 (contact, tel. +16073519956), Ken Birman2
1School of Computer Science & Technology
Huazhong Univ. of Science & Technology

qihuang@hust.edu.cn

2Department of Computer Science
Cornell University

{qhuang, ken}@cs.cornell.edu

Abstract

Data dissemination overlays are central in scalable

multicast protocols and are used in many other kinds
of distributed systems. Such overlays must self-
assemble, and in situations where there are multiple
protocol options, a suitable choice of protocol may be
key to achieving desired levels of performance, relia-
bility, or other QoS objectives. Here, we describe
SOLO, a new platform we’re constructing as part of
Cornell’s Live Objects project. SOLO automates the
task of discovering the runtime environment by sensing
such properties as NAT or firewall characteristics,
bottlenecks and bandwidth fluctuations, etc. This pa-
per presents the SOLO architecture and evaluates its
effectiveness under a range of realistic scenarios that
would be expected in wide-area environments.

Category: Regular paper for the PDS track (5700
words).
Keywords: Self-organization, Live Objects, Multicast,
Distributed Systems, Overlay Networks
This submission is NOT subject to any institutional
release or publication restrictions.

1. Introduction

By making it possible to efficiently transmit packets
to potentially large numbers of destinations, multicast
dissemination patterns arise in systems that stream
media files, replicate data, or support collaborative
work. However, because the Internet WAN has
evolved to optimize support for TCP and point-to-point
UDP, multicast generally operates as an end-to-end
service, supported by packages that struggle to work
around such barriers as firewalls, network bottlenecks
and NAT boxes. There exists a large body of work on
multicast scalability [17] and application layer multi-
cast (ALM) [18], but each solution tends to have its
own special environmental assumptions. Deploying
multicast in real WAN settings remains difficult.

Yet there has never been a wider variety of interest-
ing multicast data distribution schemes. When availa-
ble, router-supported IP multicast can provide high
reliability [7] [19] and optimization for mobile devices
in LAN settings [13]. Overlay-based ALM has become
common in WAN data-streaming platforms, and some
applications built over these capabilities are extremely
popular, for example in support of large-scale content
distribution. In settings where IP multicast is permit-
ted, protocols that exploit it can achieve exceptional
performance and scalability.

These developments establish the context for our
work. SOLO, a new platform on which we report here,
assists application designers in delaying choices: an
application can incorporate more than one possible
transport protocol, selecting the appropriate communi-
cation infrastructure for their application based on
runtime conditions that our tools discover automatical-
ly. SOLO also assists the application in configuring
the selected communication layer to conform to per-
formance and topology properties of the network, and
can orchestrate adaption if conditions change.

SOLO runs in potentially complex environments,
and while multicast is a primary focus, the system can
also be used for other kinds of overlays or transport
choices. WAN systems make heavy use of NAT boxes,
and various firewall settings can block the basic packet
transfer between hosts. Communication protocols that
are blind to such barriers will perform poorly or fail.
Moreover, unstable bandwidth and delay is common in
edge networks, and both sometimes fluctuate over time;
for some multicast algorithms, these kinds of issues
can defeat optimization decisions or trigger failures.
Host mobility is a growing challenge: when a host
moves from one access point to another, configuration
changes may be needed.

These are not insurmountable challenges. Products
such as BitTotrrent [5] and PPLive [6] have established
that a sufficiently sophisticated designer can take many
cases into account. But unless we can find ways to
reuse the needed infrastructure, such solutions benefit
just a single application. Moreover, if multiple appli-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
SOLO: Self Organizing Live Objects

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cornell University,Department of Computer Science,Ithaca,NY,14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Data dissemination overlays are central in scalable multicast protocols and are used in many other kinds of
distributed systems. Such overlays must selfassemble and in situations where there are multiple protocol
options, a suitable choice of protocol may be key to achieving desired levels of performance, reliability or
other QoS objectives. Here, we describe SOLO, a new platform we?re constructing as part of Cornell?s
Live Objects project. SOLO automates the task of discovering the runtime environment by sensing such
properties as NAT or firewall characteristics bottlenecks and bandwidth fluctuations, etc. This paper
presents the SOLO architecture and evaluates its effectiveness under a range of realistic scenarios that
would be expected in wide-area environments.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

cations run on the same node, there may be a great deal
of redundant overhead as each struggles to detect its
environment and to monitor for changes.

SOLO is not the first system to help application de-
velopers solve these kinds of problems. For example,
BBN’s QuO [8] extends CORBA with a quality of
service architecture. Developers document a set of
runtime cases and, for each, its performance needs
using the QuO interface language. The runtime system
automatically detects conditions, determines which
case applies, and the components configure themselves
appropriately; if conditions later change, QuO sends
events that notify the components and can trigger re-
configuration.

However, our problem is harder than the one solved
by QuO, which ran in enterprise LAN settings. It is
much more difficult to talk about system-wide perfor-
mance characterization in WANs, where conditions
may vary drastically from region to region and where
there is no easy way to collect metrics at a single server.
Moreover, even for a single WAN application, perfor-
mance needs can vary in use-dependent ways. For
example in a content sharing system, the lag-tolerance
for a live-streaming use may depend on the kind of
content being streamed.

SOLO operates in stages. It allows a system to spe-
cify a set of possible multicast components before
deployment. At runtime, SOLO instruments the net-
work and selects the best multicast components within
the set. It then provides continuous information up-
dates, helping the system detect and react to such prob-
lems as a loss of bandwidth on a bottleneck link on
which a group of hosts depends. By standardizing the
model and associated events, we help the developer
understand what conditions should be handled and the
styles of dynamic adaptation to consider using.

The SOLO mechanisms operate locally, at the end-
hosts where the application runs. Although it would be
interesting to explore mechanisms for unifying end-
host data into some form of shared distributed database,
we leave this and the mechanisms it would enable for
future work. For the present, communication protocols
constructed incorporate their own mechanisms for
sharing SOLO’s node-status information.

SOLO was built using Cornell’s Live Objects plat-
form (LO) [11], [12]. LO is a component-oriented
architecture that permits distributed applications to be
constructed as mashups (graphs) of components, de-
scribed in XML “recipes” and then shared via files or
email. SOLO runs as an LO application, and leverages
many LO features. Nonetheless, SOLO can be used as
a standalone service by a multicast platform otherwise
oblivious to the LO infrastructure.

The contributions of this paper are as follows:

 We present an environment-aware architecture for
designing multicast systems.

 We provide a set of tools that automate detection
and monitoring of the network, with functionality
aimed at the application designer, protocol dep-
loyment and runtime adaptation.

 We show how the componentized Live Objects
architecture was used to simplify SOLO.

2. SOLO Architecture

This section starts with a brief overview of the SO-
LO architecture, and then gives a more detailed de-
scription of its major components.

2.1. Multicast Components

SOLO makes some assumptions about the protocol

components with which it operates. First, it assumes
that these were co-designed and intended to operate
side by side. For example, a multicast option set might
include an ALM for use in the Internet WAN and an IP
multicast-based protocol for use when peers find them-
selves in a LAN setting that supports IP multicast.
Individual end-hosts might find that only the ALM
version can be used, or might be capable of launching
both. When multiple transports are used by a single
application, the transport layer (not SOLO) must relay
messages between protocol instances.

SOLO also assumes that each protocol has a boot-
strapping mechanism, whereby protocol components
can locate peers and establish initial contact with them
(perhaps directly, or perhaps through a reachback site
in the Internet). SOLO itself provides no membership
tracking, but once components have an initial peering
relationship, SOLO can help them learn about one-
another’s environment, as discussed in Section 3.

The assumptions just described are well matched to
the behavior of multicast platforms such as PPLive [6]
and AnySee [15], on which one of us (Huang) was a
lead developer. Indeed, we restructured code from
these to undertake the evaluation reported in Section 4.

2.2 SOLO Overview

SOLO has three components: the Local Detection
Service, the Multicast Selector and the Deployment
Helper. As shown in Figure 1, the Multicast Selector is
a kind of rule-driven component library filter for the
system designer. With it, an application is able to
specify a set of transport protocols and the conditions
under which each can be used.

3

The Deployment Helper selects the available multi-
cast components based on detected conditions, and
then provides the component with configuration help
to assist it during initialization and drive adaptation if
conditions change. The local detection service tests the
environment. For example, it discovers bottleneck
links, and if a node has interfaces on multiple networks,
it determines the connectivity of each interface.

Figure 1. SOLO architecture

SOLO’s Local Detection is focused on the state of

the host network interfaces, NAT and firewall settings,
and the performance of the deployed network. It works
by pinging nodes on the path from the end host to the
closest DNS. Previous studies have suggested that this
approach has a high likelihood of revealing connectivi-
ty limits and bottleneck links [1]. Below, we’ll see
how information collected this way can also be used to
group nodes co-located behind a shared bottleneck.

2.2. Multicast Selector

In SOLO, multicast components are only launched

if they find themselves in a compatible runtime envi-
ronment. As noted earlier, rather than cluttering a sin-
gle multicast protocol with all sorts of adaptively se-
lected configuration options, SOLO encourages the
designer to build a set of protocols, each with its own
relatively rigid runtime requirements, but integrated to
be capable of running side-by-side.

SOLO’s Multicast Selector uses a set of rules to de-
cide which protocols to launch. Each includes a Com-
munication Restriction and (optionally) a Performance
Requirement. A Communication Restriction is
represented as a quadruple (D, T, P, O). In each
quadruple, D specifies the direction of communication

to be tested, and T the transport layer protocol (current-
ly, TCP or UDP). P selects a specific application pro-
tocol, and O is used to designate the existence of per-
formance requirements. The available value for each
field is listed in Table 1.

Table 1. Communication Restriction value

Fields Values Meaning
D O Outward only

A All by default
T TCP TCP only

UDP UDP only
A All by default

P S Permit specified only
A Permit all

O Y Do need performance
N No specific performance

The restriction associated with P gives the rule de-

signer access to additional runtime tests. For instance,
if the designer includes a protocol component that
operates using HTTP messages for use in networks
where the NAT and firewall policy permit such mes-
sages to reach the end-host, the quadruple should be (O,
TCP, S, N), and an extra parameter to P would tell
SOLO that the required protocol is HTTP. Similarly,
SOLO can test for connectivity to a rendezvous node,
or to servers in a data center. SOLO can support the
full range of WAN tests that are used to configure
PPLive and AnySee.

SOLO’s Performance Requirement rules describe
network performance constraints. These are used to
rule out protocol choices that would fail for lack of
bandwidth, excessive latency, or other readily detecta-
ble problems. These rules take the form of a list of
tests described by three properties: (F, RL, RH). F
represents the performance metric of interest, and
RL~RH specify the acceptable range of performance
values, as illustrated in Table 2. For example, the de-
signer of an overlay-multicast voice conference system
could specify a requirement like (D, 0, 30ms) to encode
the minimal voice QoS properties from [16].

Table 2. Performance Requirement value

Fields Values Meaning
F D Delay

B Bandwidth
L Loss rage

RL $set Range lower limit
N No lower limit

RH $set Range upper limit
N No upper limit

4

SOLO’s performance tests are all local, evaluated
by measuring performance of the network route from
the local host to its DNS server. Thus, even if two
hosts both conclude that some protocol can be instan-
tiated, it might still be unable to directly connect to
some of the other hosts running the same application.

2.3. Deployment Helper

After filtering, each SOLO-equipped host will in-

itialize one or more protocol components, as seen in
Figure 2. In this example, a multicast application with
components on hosts A and C has concluded that only
one of the available multicast transports was suitable
on each, but host B is running both, and will relay
messages between them.

For interface standardization, when multiple proto-
cols are available, they will typically implement a
single interface type. For the experiments reported
later in this paper, we defined a base chunk-pull over-
lay multicast interface with four messages types: Buffer
Snapshot: exchange the buffer condition; Peer Infor-
mation: contains the peer address to communicate;
Data Request: requests data in a pull manner; and Data
Chunk: which contains the distributed data. We then
built several multicast protocols, each inheriting from
this shared interface type.

Figure 2. Component variation in network

The SOLO Deployment Helper is used to configure

communication components. For example, suppose
that a transport layer communication method is sensi-
tive to NAT and firewall settings. Even though nodes
A and B may both conclude that component X can be
used, X may still be prevented from making direct
peering connections between A and C. To assist pro-
tocols in detecting such problems, SOLO builds a list
of EUIDs (Environment Unique Identities) that
represent the communication characteristics of each

host. The EUID data is maintained locally at end hosts
using SOLO, but protocol components can share this
data with peers (either during their bootstrap exchange,
and then later during normal execution). Thus, when A
attempts to peer with C, it will have a set of EUIDs
describing C’s local environment.

The EUID contains the environment information
detected locally including the Communication Restric-
tion and network interface information, as shown in
Figure 3. The {Pub Addr} field represents the NAT
address visible to external hosts, while the {Proto ID}
points to the firewall allowable application layer proto-
col if {P} is set to value S (as Table 1).

Figure 3. EUID structure

Given a set of EUIDs for a remote host with which

it needs to communicate, a SOLO-equiped node can
compare the remote EUID data with its own to identify
communication options that might work. For example,
with reference to Figure 2, host A cannot talk directly
to host C, but is able to peer with host B using trans-
port component 1, and C can peer with B using trans-
port 2.

2.4. Local Detection Service

Figure 4. Local Detection Service components

5

The technical core of SOLO is its local detection
service. The service is composed of two parts: the
Host Interface Detector and the Bottleneck Identifier.

2.4.1. Host Interface Detector. The role of this

module is to collect data from each network interface,
tabulating it into a form from which EUID records can
be constructed. The EUID is defined on a per-interface
basis because, in large deployments, it is common to
encounter multi-homed hosts. For example, routers and
multi-ISP homed servers almost always have multiple
interfaces. We see this in Figure 5, where Node A has
this sort of multi-homed configuration; the Whois utili-
ty can be used to discover that the same machine holds
different addresses in two ISPs.

Failing to distinguish between interfaces can lead to
errors. For example, many multicast systems use the
host name to acquire the local interface address to bind,
or simply bind on all the interfaces using zeroes in the
address field of the bind argument. Such approaches
have hidden problems. The former method may lead
failure or inefficiency of connection attempts from
remote hosts which are actually nearer to some other
unbound interface in the routing table. Simply binding
on all interfaces may open an unsecure port between
external network and private network.

By treating local interfaces separately, SOLO is
able to describe a host in sufficient detail to permit
correct configuration decisions. We note that multi-
homing information is used in many ALM and VOIP
protocols. For example, ALMs often route data
through different ISPs to improve performance and
availability, and VOIP protocols often do so to get the
lowest possible delays.

Figure 5. Bridge of multi-interface host

Another role of the Host Interface Detector is to
sense access-point changes for mobile devices. When a
mobile device migrates between wireless routers, the
device’s EUID values will often change. Protocol
configurations that are keyed by the EUID value will
unambiguously identify the router the protocol is try-
ing to use. Finally, the Host Interface Detector checks

for a NAT/Firewall and senses the associated settings,
using the method detailed in [4].

2.4.2. Bottleneck Identifier. It is common to find

groups of hosts that reside behind a bottleneck link on
the edge network, especially in a home network or a
small corporate LAN. Few overlay multicast systems
are able to optimize themselves for such cases, because
they lack the needed environment information to detect
them. Thus, in current overlay multicast platforms, it is
not uncommon to see heavily traffic interference on the
shared link. In section 4, we demonstrate this problem
experimentally. The work described in [20] also identi-
fied this phenomenon, which it models as a correlation
called LLC.

Figure 6. Clustered edge peer group

SOLO’s Bottleneck Identifier helps multicast com-

ponents identify possible bottleneck link by grouping
peers on different sides of it. We believe our approach
to be a new one. Unlike the work of [2] [9], which
focuses on direct measurement of end-to-end band-
width, SOLO clusters peers into groups as shown in
Figure 6, and suggests the overlay multicast compo-
nent best suited for use under the detected conditions.

The key challenge is to recognize peers in the same
group. For peers behind the same NAT, it is natural
and simple to group them by checking public IP ad-
dress of NAT box. But this is not a complete solution
since an edge network may have multiple public routa-
ble IP addresses, while sharing a single link.

Some Peer-to-Peer systems use the public IP prefix
to identify clusters of peers. But this approach is too
coarse-grained to find a bottleneck link because some
ISPs assign the same IP prefix to machines distributed
over large geographical areas [14]. Another solution is
to use the local DNS server address, a method common
in CDN systems. However, this method is also known
to be too coarse-grained. For example, studies by
AT&T [21] found that only 69% of hosts in the same

ISP 2ISP 1

Node A

A EUID1
A EUID2

Whois
Database A ISP1

A ISP2

Possible
Bottleneck link

WANEdge Group

6

autonomous systems (ASs) are configured to use the
local DNS servers.

In SOLO, we use traceroute to detect the routing
addresses between gateway and the local DNS server,
with max hop count (TTL) set to 4. This is surprisingly
effective, and confirms an early study [10] in which it
was found that network latency is dominated by the
last few hops from the core Internet to a destination
host. Accordingly, SOLO constructs an address stack 4
hops deep and includes this into the EUID. Given a
pair of EUIDs for distinct hosts, it is now possible to
group them, as illustrated by the tree structure shown
in Figure 7.

Figure 7. Address stack and grouping tree

A protocol component using SOLO can employ this

address stack to detect possible bottlenecks. For exam-
ple, based on the grouping tree, a multicast component
can configure itself to aggregate and evaluate the
bandwidth between different levels of groups. If the
data transfer between two levels reveals a high loss rate,
the link shared by the inner group might be a bottle-
neck link. Moreover, bandwidth fluctuation can be also
discovered. In section 4, we show an experiment in this
method groups local peers to optimize streaming per-
formance despite the limitations imposed by a bottle-
neck link.

3. Implementation based on Live Objects

In this section, we provide additional details con-
cerning our implementation of SOLO within the exist-
ing Live Objects platform. We start with some basic
background concerning the Live Objects work, and
then focus on SOLO per-se.

3.1. Live Distributed Objects

SOLO was constructed using the Windows version

of Live Objects, and was coded in the .NET C# lan-

guage. The live objects platform was created as a tool
for supporting distributed and often collaborative ap-
plications that might mix content hosted on web ser-
vices platforms with event streams or other media
implemented through direct peer-to-peer protocols.
Once created, a live object has an XML representation
that can be stored in files, sent over email, etc. Users
who activate the same live object will typically see
instances of some form of reliable, consistent, distri-
buted functionality.

An individual live object represents some form of
reusable protocol or application component, but it is
rare for a live object to be used in isolation. More often,
objects are composed and interoperate with other live
objects. Thus, a typical application will be a graph of
connected objects: a “mashup”. Such a mashup, as it
might look on a single host, is shown in Figure 8.

Figure 8. Structure of a live objects application

Notice that the bottom object in the application, the

“transport” protocol, peers with other instances of the
same object on remote machines. SOLO can be unders-
tood as selecting one or more such live distributed
protocol objects, and (in effect) reconfiguring the ma-
shup dynamically on the basis of the environment.

Communication between live objects involves pass-
ing typed events over connected endpoint pairs. We see
some examples of endpoints in Figures 8 and 9. As in
other component-based systems (including Micro-
soft’s .NET platform, on which Live Objects was in-
itially based), each endpoint consists of a collection of
function interfaces that can be invoked asynchronously.
The live objects platform performs type checking,
determines which function to invoke when events cross
interfaces, and glues the objects together.

The key strengths of the live objects model stem
from its flexibility. For example, live objects can inte-
grate “pure edge” protocols, such as data replication,
with content pulled from “cloud computing” platforms,
such as web services systems that support the usual
SOA standards. Additionally, live objects have a repre-
sentation that can be shared through an XML encoding.

SOLO leverages the live objects type-checking me-
chanisms. For each communication protocol, SOLO
generates endpoint references that encode the informa-

7

tion in the Communication Restrictions and Perfor-
mance Requirement rule sets, representing these are
endpoint type constraints. At runtime, SOLO gene-
rates an additional endpoint, annotated with the dis-
covered properties of the environment. The live ob-
jects type-checking algorithm will then select matching
endpoint(s), activating only the protocol components
that satisfy the local restrictions.

Figure 9. Two connected Endpoints

3.2. Rules for Filtering Multicast Components

To illustrate these ideas, we describe the way that

we use the mechanism to select an appropriate multi-
cast protocol. Table 3 shows the matched endpoints to
Communication Restriction and Performance Re-
quirement. In Table 3, the Fields D, T and P are
matched with the same fields in Communication Re-
striction. When they are set to A, Multicast Selector
will skip checking the endpoints. The last field is for
Performance Requirement. Figure 10 illustrates the
process by which rule-checking selects the appropriate
modules.

Table 3. Endpoints for Communication Re-

striction and Performance Requirement

Fields Values Endpoint Interface
D O [D:O]

OnDisableContacted ()
A

T TCP [T:TCP]
OnDisableUDP ()

UDP [T: UDP]
OnDisableTCP ()

A
P S [P: S: Protocol ID]

OnPrivProtocolParser ()
A

F
RL
RH

 [F: RL: RH]
OnOutRange ()

Recall from Section 2.2 that after filtering the avail-

able protocol modules, SOLO passes a list of EUID

values to the multicast modules, which share these
during their bootstrapping protocol. The desired effect
is that peers can compare EUID values and thus agree
on the best option for connecting. In some situations,
this will mean that a single host ends up running mul-
tiple protocols side-by-side.

Figure 10. Process of checking rules

3.3. Multiplexer

When a host runs multiple transport protocols, SO-

LO assists them in handling the incoming traffic using
a communication multiplexer. This runs beneath the
multicast transports, vectoring messages to the appro-
priate component, and partially automates the selection
of the best communication route to use.

The Multiplexer is designed to listen on three kinds
of ports. Most protocols use some mixture of dedicat-
ed TCP and UDP sockets, and the multiplexer can
monitor these if desired (for example, if two multicast
protocol modules share a single UDP port). Addition-
ally, WAN protocols used in systems such as AnySee
often include a fall-back HTTP web-services scheme
for use when all else fails. As shown in Figure 11, the
multiplexer inserts a header of its own on outgoing
traffic and interprets the headers of incoming messages,
vectoring them appropriately. Internally, the parser
used for HTTP ports is implemented as a live object,
and could be replaced with other objects to support
other forms of last-resort rendezvous/tunneling solu-
tion (e.g. via a database, IM, or email system).

Figure 11. Multiplexer

Interface A ()
Interface B ()
Interface C ()

D ()
E ()
F ()

Interface D ()
Interface E ()
Interface F ()

A ()
B ()
C ()

Endpoint 1 Endpoint 2

8

4. Experiments on SOLO Detection Service

We designed an experiment to illustrate the effec-
tiveness of the SOLO platform, focusing initially on
the performance of the SOLO Local Detection Service.
This experiments was run on the Emulab testbed [3] at
Utah and focuses on our running example: a multicast
transport that uses SOLO to adaptively configure itself.

4.1. Bottleneck Influence on Multicast

Recall that in section 2.4.3, we emphasized the sen-

sitivity of current overlay based multicast to bottleneck
link performance. To establish ground-truth, we began
by designing an experiment to illustrate this issue, as a
function of bottleneck topology. We studied a network
consisting of two sets of hosts connected with a
1.5Mbps link. One set of hosts represents the External
100Mbps WAN and the other represents the local
group behind the bottleneck link connected in the same
100Mbps LAN. The overlay multicast algorithm em-
ployed is a swarm-style mesh-based overlay that dis-
seminates data using a pull-based local-rarest-first rule.
Our experiment models a streaming download in which
a source node generates a 1Mbps bit-rate stream, seed-
ing randomly selected clients with chunks of data that
they then collaborate to share. The data consists of a
series of 180 “stream buffers” each containing 1
second of video content. The chunk size was set to 0.2
seconds of data, and each experiment lasts for 20 mi-
nutes. A stream buffer must be completely received on
time; partial buffers are discarded.

We simulated a setup in which nodes reside either
in the Internet WAN (W) or within several LANs (L),
each situated behind a bottleneck. Lacking any form of
locality awareness, download swarms will attempt to
fetch chunks over the bottleneck links more or less at
random. Our bottlenecks can serve no more than two
streams concurrently, hence if too much remote com-
munication occurs, download quality suffers. This is
visible in Table 4, where at most 13% of buffers were
successfully received with 5 LANs and 5 nodes in each.

Table 4. Isolated group experiment result

of W # of L # in L Avg. Buffer Percentage
4 5 5 12.695%
4 1 20 4.089%
16 1 20 3.978%

The rest two rows also show that the download

speed is only affected by the number of nodes in the
same LAN, representing the severity of confliction at
the bottleneck link.

Figure 12 looks more closely at the average buffer
quality as a function of time. We look at hosts situated
in five LANs, with 4 additional hosts in the Internet
WAN (row 1 of Table 4). Initially, the LAN hosts
buffers fill nearly linearly, reaching 20%. However, as
nodes begin to reach out for rare chunks, they stress the
bottleneck links, and most buffers are still incomplete
when the timeout expires.

Figure 12. Buffer condition of isolated 5 LANs
with 4 WAN hosts

Table 5. Completed group experiment result

of W # of L # in L Avg. Buffer Percentage
4 5 5 35.869%
4 1 20 24.827%
16 1 20 15.993%

Figure 13. Buffer condition of locality biased 5
LANs with 4 WAN hosts

It is natural to wonder if the locality-aware overlay

mechanisms that have been proposed for BitTorrent
and PPLive would improve these results. Accordingly,
we repeated our experiment with same environment
settings, but using locality-aware biasing mechanisms.
Table 5 and Figure 13 show the results. We can see
that with bias in favor of nearby chunks the bottleneck
stress problem is delayed, and the overall success rate

0

0.05

0.1

0.15

0.2

0.25 Lan1
Lan2
Lan3
Lan4
Lan5

0

0.1

0.2

0.3

0.4

0.5

Lan1
Lan2
Lan3
Lan4
Lan5

9

for buffer reception rises. Yet as illustrated in Figure
13, the bottleneck remains a problem: after each node
in a LAN has obtained all the chunks accessible from
other hosts in the same LAN, app nodes all turn to-
wards WAN data sources for rare chunks, overloading
the bottleneck link.

4.2. Optimization Result based on SOLO

We next modified our system to use the tools pro-

vided by SOLO. SOLO is able to distinguish between
LAN and WAN nodes, and peers within the same re-
gion can discover this by comparison of the address
stacks encoded into the EUID structure. Recall that
during the bootstrapping stage, peers will have discov-
ered one-another and shared EUID information. On
the other hand, because SOLO lacks a replication me-
chanism of its own, applications that share EUID data
must be aware that it could become stale as nodes join,
leave, or move about.

Given the possibility of recognizing of co-located
nodes, it is easy to build a bottleneck-link aware va-
riant of the swarming protocol. In this scheme, nodes
issue chunk-requests preferentially to nodes in the
same group. A single group leader is the only one to
request data from outside the group. Notice that this
scheme should be quite robust even if EUID data
evolves at runtime.

Table 6. Completed group experiment result

of W # of L # in L Avg. Buffer Percentage
4 5 5 70.453%
4 1 20 72.660%
16 1 20 66.452%

Figure 14. Buffer condition of optimized 5
LANs with 4 WAN hosts

Table 6 and Figure 14 show the results of this mod-

ified experiment, still running in the same configura-
tion. Our network is still overloaded, and we see that

not all buffers are successfully received. However, the
percentage success rate has risen to between 66% and
73%. There are many streaming media applications
that would be unusable with a 13% success rate, but
acceptable at 66%.

Notice that since only one leader exists in each
LAN group, the number of hosts that reside with it
behind the same bottleneck link should not (and does
not) affect the quality of data transfer across the link.
Thus, to the extent that the SOLO heuristics are able to
detect bottleneck links and correctly identify co-
located hosts, SOLO-assisted performance should be
sharply better than what one sees in more traditional
BitTorrent or PPLive swarm-style downloads.

4.3. Network Interface and NAT/Firewall
Checking

For reasons of brevity, we were not able to present
experiments to evaluate the network interface detection
and NAT/Firewall detection mechanisms supported by
SOLO. Nonetheless, even in the previous experiments,
SOLO’s network interface detection plays a useful role.
As readers may be aware, Emulab machines have six
network interfaces, one on the 159.98.36 network.
SOLO’s interface detection mechanism was used to
ensure that the overlay multicast used all active inter-
faces except 159.98.36 network.

5. Conclusion and Future Work

Our paper presented SOLO, a live-objects based
system to assist transport protocols in configuring
themselves to cope with potentially challenging net-
work conditions. SOLO has a rich set of functionality,
supporting a wide range of adaptations that are seen in
systems such as BitTorrent and PPLive. Our experi-
ments focused on one novel capability enabled by
SOLO: detection of bottleneck links that partially iso-
late groups of nodes. We demonstrated that by exploit-
ing such information, one can create streaming multi-
cast protocols that are more effective than protocols
that fail to do so. Down the road, we plan to explore a
wider range of adaptations, and support for non-
multicast applications such as VOIP.

6. Acknowledgements

We are grateful to the Chinese National Research
Foundation, the National Science Foundation, the Air
Force Research Laboratories at Rome NY, Intel and
Cisco for their support of this research.

0

0.2

0.4

0.6

0.8

1

Lan1
Lan2
Lan3
Lan4
Lan5

10

7. References

[1] A. Akella, S. Seshan, and A. Shaikh, “An Empirical
Evaluation of Wide-Area Internet Bottlenecks”, In Proceed-
ings of IMC’03, Miami, Florida, USA, October, 2003.

[2] Allen B Downey, “Using pathchar to estimate Internet
link characteristics”, In Proceedings of SIGCOMM’99,
Cambridge, MA, USA, 1999.

[3] B. White, J. Lepreau, L. Stroller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. “An inter-
grated experimental environment for distributed systems and
networks”, In Proceedings of OSDI’02, 2002.

[4] Bryan Ford, Pyda Srisuresh, and Dan Kegel, “Peer-to-
Peer Communication Across Network Address Translators”,
In Proceedings of USENIX, Anaheim, CA ,2005

[5] http://www.bittorrent.com

[6] http://www.pplive.com

[7] J.C. Liu and S. Paul, “RMTP: a reliable multicast trans-
port protocol. In Proceedings of IEEE Infocom’96, San Fran-
cisco, USA, March 1996.

[8] John A. Zinky, Davie E. Bakken and Richard E. Schantz,
“Architectural Support for Quality of Service for CORBA
Objects”, Theory and Practice of Object System, Jan 1997.

[9] Kevin Lai and Mary Baker, "Nettimer: A Tool for Mea-
suring Bottleneck Link Bandwidth", Proceedings of the
USENIX Symposium on Internet Technologies and Systems,
March 2001.

[10] Krishna P. Gummadi, Stefan Saroiu, and Steven D.
Gribble, “King: Estimating Latency between Arbitrary Inter-
net End Hosts”, In Proceedings of SIGCOMM Internet Mea-
surement Workshop, Marseille, France, November 2002.

[11] Krzysztof Ostrowski, Ken Birman, Danny Dolev, “Live
Distributed Objects: Enabling the Active Web”, IEEE Inter-
net Computing, November, 2007.

[12] Krzysztof Ostrowski, Ken Birman, Danny Dolev, and
Jong Hoon Ahnn, “Programming with Live Distributed
Objects”, In Proceedings of ECOOP, Cyprus, July 2008.

[13] Lin, C. R., Kai-Min Wang, “Mobile multicast support
in IP networks”, In Proceedings of INFOCOM, Tel Aviv,
Israel, 2000.

[14] Michael J. Freedman, Mythili Vutukuru, Nick Feamster
and Hari Balakrishnan, “Geographic Locality of IP Prefixes”,
In Proceedings of IMC’05, Berkeley, California, USA, Octo-
ber 2005.

[15] Qi Huang, Hai Jin, and Xiaofei Liao, “P2P Live
Streaming with Tree-Mesh based Hybrid Overlay”, In Pro-
ceedings of ICPP Worshop’07, Xi’an, China, 2007.

[16] Shansi Ren, Lei Guo, and Xiaodong Zhang, “ASAP: an
AS-Aware Peer-Relay Protocol for High Quality VoIP”, In
Proceedings of ICDCS’06, Lisboa, Portugal, July 2006.

[17] Stephen E. Deering, David R. Cheriton, “Multicast
routing in datagram internetworks and extended LANs”,
ACM Transactions on Computer Systems, Volume 8, Issue 2,
pp. 85-110, May 1990.

[18] Suman Banerjee, Bobby Bhattacharjee, Christopher
Kommareddy, “Scalable Application Layer Multicast”, In
Proceedings of SIGCOMM’02, Pittsburgh, Pennsylvania,
USA, August, 2002.

[19] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L.
Zhang, “A reliable multicast framework for light-weight
sessions and application level framing”, IEEE/ACM Transac-
tions on Networking, 5(6), December 1997.

[20] Ying Zhu, Baochun Li, “Overlay Multicast with In-
ferred Link Capacity Correlations”, In Proceedings of
ICDCS’06, Lisbon, Portugal, July 2006

[21] Zhuoqing Morley Mao, Charles D. Cranor, Fred Doug-
lis, and Michael Rabinovich, “A Precise and Efficient Evalu-
ation of the Proximity between Web Clients and their Local
DNS Servers”, In Proceedings of USENIX’02, Monterey,
California, June 2002.

